
A model for energetic ion generation in an anode plasma 
R. E. Duvall, A. Fruchtman, Y. Maron, and L. Perelmutter 
Department of Physics, Weizmann Institute of Science, Rehovot 76100, Israel 

(Received 7 December 1992; accepted 2 June 1993) 

Mechanisms for energetic ion generation that could explain the observed ion energies in the 
anode plasma of a magnetically insulated ion diode [Phys. Rev. A 39, 5842 (1989)], are 
discussed. It is suggested that strong electric fields that result from large density gradients on few 
tens of micrometers near the anode cause the ion acceleration. Steady state as well as 
time-dependent accelerations are examined. 

1. INTRODUCTION 

The ion temperature of a magnetically insulated diode 
(MID) plasma has a major effect on the device perfor- 
mance, particularly regarding beam divergence. Anode 
plasmas with ion temperature of about 20 eV have been 
observed in the MID experiments at the Weizmann 
Institute.‘” This ion temperature is roughly uniform over 
the plasma, implying that the ions do not acquire their 
energies in the bulk plasma. In this paper we explore the 
possibility that ions in MID plasmas are heated in a nar- 
row layer (thickness smaller than 50 pm) near the anode 
surface, much narrower than the 1 mm plasma width. It 
has long been known that the free expansion of a plasma 
can result in the generation of energetic ions. Ion acceler- 
ation due to plasma expansion is known to occur, for ex- 
ample, in vacuum arcs+* and in laser-produced 
plasmas.9-*4 We suggest that a narrow dense plasma lo- 
cated near the anode of the MID and having high electron 
temperature expands within this narrow region, resulting 
in energy transfer from electrons to ions. The plasma flow- 
ing out of this region thus contains energetic ions as ob- 
served in experiments. We examine this mechanism for 
both steady-state and time-dependent expansions, and in 
both planar and spherical geometries. 

The dense plasma in our model arises from the rapid 
ionization of desorbed neutrals. Initially there is a high- 
density cloud of neutral atoms, having spatial extent of 
only few tens of micrometers, much smaller than the 
plasma width of 1 mm. Such neutral clouds are believed to 
appear on the anode surface in MID’s. We assume that by 
some mechanism the electrons near the anode surface have 
a higher temperature ( - 30-50 eV) than in the bulk of the 
plasma, even though so far there is no experimental sup- 
port to this assumption. After electron impact ionization of 
the neutrals, the resulting plasma expands. The plasma is 
immersed in a strong magnetic field. However, both ions 
and electrons are considered unmagnetized; the ions be- 
cause their Larmor radius is larger than the thickness of 
the neutral layer, and the electrons because they are colli- 
sional. The plasma expansion is therefore ambipolar. The 
electrons have much higher thermal velocity than the ions, 
and therefore leave the neutral cloud much faster. As a 
result of the rapid electron flow from the neutral cloud, a 
charge imbalance, and therefore an electric field, is pro- 
duced. The resulting potential hump continues to grow 

until the electron and ion fluxes are balanced. Ions then 
gain energy as they fall down the potential hill, while elec- 
trons lose energy as they climb out of a potential well. 
Thus, through this energy exchange, ion acceleration and 
electron cooling take place. We suggest that this is the 
mechanism by which ions acquire their kinetic energy. 

The flow of neutrals, the plasma production through 
ionization, the plasma expansion, and the ion acceleration, 
all these processes occur simultaneously. In some cases 
certain processes are dominant and the picture is simpler. 
For simplicity we examine two such cases. In one case a 
steady state is established, in which the plasma production 
in the layer is balanced by the flow of plasma from the 
layer. On a time longer than the transit time, the change in 
density of the neutrals also changes the steady state. The 
first case we describe is therefore plasma expansion with 
ionization in a steady state. The second case we study is a 
time-dependent expansion. Such an expansion occurs when 
the supply of neutrals from the anode ceases. If the ioniza- 
tion rate is faster than the rate of plasma expansion, full 
ionization takes place, followed by a time-dependent ex- 
pansion of the fully ionized dense plasma. The second case 
we describe is therefore a time-dependent plasma expan- 
sion without accompanying ionization. As we shall show 
the essential features of the energy transfer from electrons 
to ions are basically the same for the steady-state and time- 
dependent expansions. 

In addition to the spatial extent and the neutral den- 
sity, the geometry of the neutral cloud will affect the nature 
of ion heating. In this paper we consider neutral clouds 
having either planar or spherical symmetry in space. For a 
slab of neutrals having no density dependence in they and 
z directions, all ion motion is in the x direction, perpendic- 
ular to the anode. However, MID measurements indicate 
that the ion velocity distribution is isotropic. A spherically 
symmetric ball of neutrals will result in ion motion in every 
direction. We therefore consider the ion velocity distribu- 
tion which results from many “half-balls” on the anode 
surface. Here the anode at x = 0 divides each ball in half. 
We are then interested in the ion flow due to all neutrals 
having x > 0. Such a distribution of neutrals results in a 
more isotropic ion velocity distribution than that of a neu- 
tral slab. The magnitude of the energy transfer from elec- 
trons to ions, however, is not strongly affected by geome- 
try. 

In Sec. II we describe the experimental data. In Sec. 
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FIG. 1. The blue shift of the CI~I 2297 A  line measured at 53’ with the 
normal to the anode (N) and the shift measured parallel to the anode 
(P). Each point on the N and P  curves is an average of 13 and 12 
discharges, respectively. 

III we introduce the model used in this paper, independent 
of geometry. Ions are cold and collisionless, while electrons 
are collisional and are taken to obey the adiabatic relation 
P,a nr, where P, and n, are the electron pressure and den- 
sity, respectively. The electron mass is ignored, and 
quasineutrality is assumed for the proton electron plasma. 

In Sec. IV we solve for the steady-state and time- 
dependent expansions in planar geometry. The steady-state 
solution is determined by the parameter a, which is the 
product of the ionization frequency and the ion transit 
time. In planar geometry, the condition a <0.404 is re- 
quired for a steady-state flow. For the steady-state flow we 
found that the initially cold ions can gain energy up to 0.77 
of the maximal electron temperature in the layer. For time- 
dependent expansion, a final ion energy of two to three 
times the final electron energy results from plasma volume 
expansion by a factor of 5-8. 

In Sec. V we solve for the steady-state and time- 
dependent expansions in spherical geometry. For spherical 
geometry we found that the upper limit on a for steady- 
state flow is about a= 1.76, roughly a factor of 4 larger 
than for planar geometry. In steady state the ions can gain 
energy up to about 0.7 of the maximal electron tempera- 
ture in the layer. For time-dependent expansion, a final ion 
energy of two to three times the final electron energy re- 
sults from plasma volume expansion by a factor of 5-8, the 
same as for planar geometry. In Sec. VI conclusions are 
presented. 

II. THE EXPERIMENTAL RESULTS 

As a part of a spectroscopic research of the anode 
plasma at the MID of the Weizmann Institute, we per- 
formed a detailed study of the ion velocities. Figure 1 
(taken from Ref. 1) shows the blue shift of the CID 2297 A 
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FIG. 2. Position averaged Crit temperatures obtained using the 2297 A  
line for the y direction (A) and the z direction (B). 

line measured at 53” with the normal to the anode (N) and 
the shift measured parallel to the anode (P) . The shift (N) 
corresponds to velocity that decreases from 1 cm/,usec 
(N 15 eV) at time 50 nsec to 0.5 cm/psec at 100 nsec, 
while the shift P corresponds to velocities less than 0.1 
cm/psec. This measurement shows clearly that the ions 
have a flow velocity in a direction perpendicular to the 
anode. Figure 2 shows the position averaged CIII temper- 
atures obtained using the same line as in Fig. 1 for the z 
direction ( B) (parallel to the magnetic field) and for the y 
direction (A) (normal to the magnetic field and parallel to 
the anode surface). Both temperatures are approximately 
the same ( 10-20 eV). This thermal energy is similar to the 
kinetic energy associated with the directed motion normal 
to the anode surface that is shown in Fig. 1. 

In addition to the analysis of line shapes of spontane- 
ous emission, we employed techniques of laser absorption 
which enabled us to measure ion temperatures as close as 
30 pm to the anode surface. Figure 3 (taken from Ref. 3) 
shows the profile of a MgR absorption line obtained within 
30 ,um from the anode and the profile of a MgrI spontane- 
ous emission line obtained within 100 pm to the anode 
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FIG. 3. Absorption and emission Doppler broadened profiles for an Mgir 
transition. The wavelength M  is with respect to the line center, The 
profiles of the absorption line ( 3Stn + 3Pt,?) and that of the spontaneous 
emission f3Ps,,-3St,2) are obtained within z-30 pm and z 100 pm, 
respectively, from the anode surface. The two profiles were measured 
simultaneously for t=55 nsec. The uncertainty in each data point for the 
emission profile is * 15% (not shown in the figure). 
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surface. Both profiles show a similar temperature of N 15 
eV. This was the same temperature that we observed at 
larger distances from the anode surface. 

The measurements described above show an ion flow 
velocity of 10-20 eV in a direction perpendicular to the 
anode surface. The ions have a temperature parallel to the 
anode surface (both parallel and perpendicular to the mag- 
netic field) of 10-20 eV as well. This velocity and temper- 
ature seem to be acquired by the ions very close to the 
anode surface, within 30 pm. Our goal in the present paper 
is to suggest mechanisms that could generate such ion flow 
velocity and temperature at such a short distance from the 
anode. 

Ill. THE MODEL 

We assume that a plasma is generated in a small re- 
gion, few tens of micrometers wide, near the anode. The 
density there is larger than the density of the background 
plasma (which is <, 2 X lOI cmm3). The plasma within the 
region of the increased density flows into the background 
plasma. This motion is characterized as follows: ( 1) the 
time of flight (few nsec) is much shorter than the ion 
cyclotron period which is, for the 7 kG magnetic field, 
equal or larger than 100 nsec and much shorter than the 
ion collision time (which is larger than 10 nsec). The ions 
are therefore collisionless and unmagnetized. Also, the ion 
kinetic energy is associated only with its directed velocity. 
We therefore describe the ion dynamics by the momentum 
equation of a cold fluid 

M $+v*V v=-eV4. ( ) 
Here e and M are the ion charge and mass, v is the ion 
velocity, and 4 is the electrostatic potential. (2) The elec- 
trons are assumed to be in thermal equilibrium so that we 
can neglect their inertia. This is equivalent to the assump- 
tion that the electron thermal velocity is much larger than 
its directed velocity. Therefore 

O= -e --- mveNve 

-mvJv,-v). (2) 

Here n,, v,, P,, and m are the electron density, directed 
velocity, pressure, and mass. The electrons are assumed 
collisional or magnetized enough so that their pressure is 
isotropic. We also allow electron collisions with stationary 
neutrals of frequency V&J and collisions with ions of fre- 
quency v~i. We assume further that all quantities depend 
on x only. We add Eqs. ( 1) and (2)) and obtain 

a 
(ii ) 

lap, m +vy& v,=-----ve, pax M (3) 

where 

V,SVeN-k&(VeN+vei), (4) 

also pdfn and w,zeBdmc. The second term on the 
right-hand side of (3) is small relative to the first term 
provided 

%,4 y,. (5) 
UC% vth - 

Here L is the width of the layer and vu, is the electron 
thermal velocity. If the electrons are magnetized 
w,+ V&, ,Vev,i, the COllision frequency iS Ye= I& ( V=N-!- Vei) 

and inequality (5) becomes 

(6) 

In the anode plasma the electron collision frequency was 
found to be one-fourth of the electron cyclotron frequency, 
and about ten times larger than Spitzer’s collision 
frequency.“” In the plasma near the anode rLZ 7 pm, 
L(50 pm, (ve~+Vei) ZtiJ4=2~ 10” see-‘, and V, is a 
few cm/psec. The left-hand side of (6) is larger than 1, 
and, therefore, inequality (5) seems to be satisfied to a 
good approximation even for the magnetized case. If V,i is 
larger than veN and o,, v= is even smaller and inequality 
(5) is clearly satisfied. In most of this paper we therefore 
neglect the last term in Eq. (3). We will, however, also 
address the case that collisions with neutrals are dominant 
and vezvN which is large enough so that (5) is not valid. 
For such a case vN has to be larger than 10” see-’ and the 
neutral density larger than 2X lo’* cmF3. We require, 
however, that either &h/v or rL be smaller than L, so that 
we can still assume that the electron pressure is isotropic. 

The electron pressure is assumed to satisfy a polytropic 
equation of state 

P,=Apy, (7) 
where y is the ratio of specific heats. Since the plasma 
density is high we require quasineutrality n,rn. For our 
- 10 eV electron temperature plasma of n,<N 2X 1015 
cmm3, the Debye length is smaller than 0.5 pm. We there- 
fore require that LsO.5 pm. 

We complement Eqs. (3) and (7) by the continuity 
equation 

where s is a source and sink function of ionization, recom- 
bination, and so on. 

For both slab and spherical geometries, we will now 
find the plasma evolution for the following cases: 

( 1) The plasma is constantly supplied with ioniza- 
tions. We calculate the steady state s( r)#O, a/&=0. 

(2) The plasma is generated in a time much shorter 
than the expansion time. We solve for the time dependence 
of the plasma where s(r) =O, a/&#O. 

IV. SOLUTIONS IN SLAB GEOMETRY 

We assume that a high-density layer of neutrals exists 
near the anode. The plasma is therefore produced in a 
localized area near the anode. In our model we take the 
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neutral cloud to be symmetric about x = 0, (the anode sur- 
face). A plasma density hump, accompanied by a potential 
hump, therefore forms, symmetric about x=0. The ions 
are accelerated as they slide down the potential hill, while 
the electrons lose some of their thermal energy. The real 
neutral cloud corresponds to the half-cloud which occupies 
x> 0. We therefore consider the flow of ions which are 
generated in this half of the cloud, all of which flow away 
from the x=0 surface. We look for the time-independent 
profiles of density, electric potential, electron temperature, 
and ion velocity. 

All the quantities depend on x only, the distance from 
the wall. The ions are assumed collisionless. The ion den- 
sity is 

nj(X) = 
s 

x dx’g(x’) 
0 M&X’) * (9) 

Here g(x’) is the rate of ion generation and LD(X,X’) is the 
velocity at x of an ion which was born at x’ 

(10) 

The ion generation rate is 

g(x)=xn&)nN(x). (11) 

Here, n,(x) and nN(x) are the electron and neutral densi- 
ties and x = a,~,, where o, is the cross section for ioniza- 
tion by electrons. We assume that 

nN(x) =&e-‘? (12) 

The electrons satisfy Eq. (2) and have a polytropic equa- 
tion of state (7). We assume that inequality (5) holds, and 
thus 

n,(x)=n,[ 1+(F) :]I”‘-*‘, (13) 

where no and To are the electron density and temperature 
at x=0, where 4(x=0)=0. In writing Eq. (13) we as- 
sume that y > 1, and exclude the isothermal case ( y= 1). 
We restrict ourselves to the quasineutral case, and thus 

; [ l+(~)y]‘~+l’ 

s 

5 dg’ em”‘{1 + [(y- l)/y]Y’}l’(~-l) 
= 

(w-Y)*‘* 9 (14) 
0 

where Y=e4/To, c=x//z, and Y’=Y({‘). Also, we de- 
fine here as vi/vtr, where vi=xNe is the ionization fre- 
quency at x=0, and vtr = ( 2TdMj) “*/A is a typical in- 
verse transit time for an ion moving across the neutral 
layer. This is a version of the well-known plasma 
equation’&” in the quasineutral approximation, 

Before finding solutions to Eq. ( 14), we consider 
whether energy is conserved by the system it describes. 
Ions have initially zero kinetic energy, so the normalized 
ion energy flux at 6 is 

xPG’)-w~)l. (15) 
It can be shown that the electron equation of state [Eq. 
(7)] implies that electrons generated by ionization have an 
initial average kinetic energy of [y/(y- l)]T. Therefore, 
the electron energy flux is 

(That the initial electron energy {[y/( y- 1 )]T} is larger 
than the thermal energy {[l/( y- l)]T}, is not surprising. 
The reason that ion heating occurs is that these more en- 
ergetic electrons give up some of their energy to the ions 
before becoming thermalized.) We now compare these 
fluxes to the energy generation rate (SE) between 0 and f: 

(17) 

The expression (I’;+ I’:) -SE is identically zero, as is 
necessary for energy conservation. 

As is well known, Eq, ( 14) can be solved for g(Y) . We 
multiply both sides of the equation by (Y-Y,) -1’2 and 
integrate on Y from zero to Y1, after we make Y rather 
than 5 the independent variable in the integral on the right- 
hand side. The result of the integration is 

[ l+ ( y)y,] *‘(y-‘) 

(181 

where we wrote Y instead of Y, , and 

G(Y)= Jb' (y,~;)l/2 [ l+(~)Yt]'"'-I'. 
(19) 

Let US choose y= 5/3. Then 

In order to simplify the analysis let us approximate the 
electron density in the expression for g(x) [Eq. ( 1 1)] as a 
constant 

n,(x) sno. (21) 

The electron density changes less than the neutral density 
and thus this seems a reasonable approximation. With this 
approximation Eq. ( 18) is simplified to 
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FIG. 4. (a) Y vs 5, (b) the normalized density n/no vs E, (c) the normalized temperature T/T, vs  6, and (d) the normalized ion energy E/TO vs 
4, for various values of a. 

;G(Y)=TT(e-~-l) g>o. (22) 

From Eq. (22), Fig. 4 presents the potential Y, the 
normalized electron density (divided by the maximal den- 
sity ), the normalized electron temperature (divided by the 
maximal temperature), and the normalized ion energy as 
functions of c. The plots are given for several values of the 
parameter a. For a < a* = 0.404, the potential Y is contin- 
uous for c- CO. Here ion heating occurs in a steady-state 
manner, with up to 0.77To of the electron energy being 
transferred to ions. 

For a > a*, Y becomes singular for finite c, and the 
assumption of quasineutrality breaks down. We have 
solved the full Poisson equation for this case, and have 
found that this breakdown of quasineutrality corresponds 
to the disappearance of steady-state flow. Physically, this 
can be understood as follows: Increasing a corresponds to 
increasing the ionization rate vi. For a steady-state solu- 
tion, more rapid ionization necessitates larger ion flow, 
therefore a larger drop in potential Y. As Y decreases, 
however, the electron density also decreases, thus restrict- 
ing the ion flow. Therefore, increasing the drop in potential 
Y becomes less and less effective at increasing the ion flow. 
Thus we find the critical value a = a*, above which the ion 
flow cannot match the ion generation rate, regardless of the 
size of the potential drop in Y. For a>a*, therefore, a 
steady-state flow is not possible. In reality the neutral den- 
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sity (12) is not specified but affected by the process of 
ionization itself. The neutral layer dimension will be ad- 
justed so that a <a*. 

We now solve for the time-dependent expansion in slab 
geometry. We assume the plasma is generated on a time 
much smaller than L/v where L and v are characteristic 
length and velocity scales. The flow of neutrals ceases and 
the plasma then expands until its density equals the density 
of the background plasma. The reduction in temperature is 
Tf/Ti= (pf/pi)YM1= ( Lf/Li)-d(y-l). Here i,f denote 
initial and final, L is a characteristic dimension, and d= 1, 
2, or 3 is the dimensionality parameter. The isotropic ve- 
locity distribution we measured suggests that y=5/3. If 
the expansion is one dimensional d= 1, 

($),,=($T)-2’3. (23) 

If the electron temperature decreases to a fourth and the 
rest of the energy becomes ion directed energy we obtain 
final ion energy three times the electron energy. It is there- 
fore required that the plasma dimension increase by a fac- 
tor -8 for such an energy transfer. 

This estimate is consistent with the following explicit 
self-similar solution. For a time-dependent expansion, we 
take s(r) to be zero in Eq. (8). The governing equations 
become 
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( 1 -$eUg r-l=--- Ay a y-1 
(y-l) ax p -vv 

and 

(24) 

(25) 

where v is the fluid velocity. These two equations represent 
the expansion of a polytropic gas. In our case the expan- 
sion is into the background plasma, but for simplicity we 
examine expansion into vacuum. We will look for a solu- 
tion which is symmetric about the anode surface (x=0). 
We then consider the ion flow and heating for x > 0. For 
the initial density 

-g WY-l) 
pW=O)=pcQ 1-7 , 

( 1 X0 
(26) 

there is a self-similar solution of Eqs. (24) and (25). A 
solution for the analogous problem in spherical geometry, 
without the drag force, was given in Ref. 20. For conve- 
nience we write the equations in nondimensional units. The 
initial electron temperature at the center is 
P,.Jna, = Ap@f/pd, = T,, A = T,pk y/M. We normalize 
x by Xc, p by pco, v by v,= ( TdM) “2, t by Xo/vs, and v 
by vJXe. Equations (24)-(26) become 

(27) 

p(x,t=O) = (1 -x2)“(Y--l), (28) 

for x< 1. The solution of these equations, similarly to Ref. 
20, is 

p(x,t)‘pc(‘)( I-&J’(Y (29) 

Also 

p,(W(t) = 1, (30) 

where 

p,(O) =X(O) = 1. (31) 

The velocity is 

v( r,t) =2( t)x/X( t) (32) 

for x<X( t). The equation of motion for the radius X is 

(33) 

In the first phase of the expansion, the drag term is small 
and the plasma is accelerated. When the two terms on the 
right-hand side of the equation become comparable, the 
plasma velocity reaches its maximum and starts to de- 
crease. At these later times X is small and 

FIG. 5. X YS r, for Y= 0.1, 1, 10. The dotted curves show the approximate 
results [(36) and (3711 for Y= 1. 

(34) 

The velocity X approaches zero asymptotically. At earlier 
times we neglect collisions and the solution of (33) with- 
out the second term on the right-hand side is 

y-l X dx 
*=p f ) (l--x’-r)“~* (35) 

Figure 5 shows X as a function oft for various values of v 
for y=5/3. For v= 1, which corresponds to a neutral den- 
sity of 1Or8 cmA3, we plot also the approximate relations 
(34) and ( 35) which become 

40 
x= 3yt 

( 1 

3/8 

, t-tee 

and 

(36) 

x= 1 +$t”, t-0. (37) 
It seems that unless the neutral density is very large ( 1Or8 
cmV3) we can neglect the collision term (vX) in (33). We 
therefore examine the rate of energy transfer from elec- 
trons to ions when collisions are neglected. The electron 
thermal energy &-=$Jfd,x P,(x,t) and the ion directed 
energy E$= J0xd.x ipv(x,t)2 are 

dx( 1 -x2)5/2 

and 

&(I)=; (1-h) Jet dx(l-x2)5/2, (39) 

where we used the relation (X)2= 15( 1 - 1/XZ’3). We ob- 
tain ’ 

E&!$-=x2i3 - 1. (40) 
For ion energy two to three times the electron energy X has 
to be a factor of 5-8. This is consistent with the conclusions 
drawn from Eq. (23). Assume that at this value the aver- 
age density in the slab is equal to the density of the plasma 

3404 Phys. Fluids 6, Vol. 5, No. 9, September 1993 Duvall et a/. 3404 

Downloaded 04 Feb 2004 to 132.77.4.129. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



background. The average density of the slab is then ini- 
tially five to eight times the background density. 

For both steady-state and time-dependent expansions 
we find ion heating in the range observed in experiments. 
Thus, the slab model we presented can explain the higher 
ion energies. It does not, however, explain the almost iso- 
tropic ion distribution, In the next section we solve the 
steady-state and time-dependent cases in spherical geome- 
try in order to account for that isotropy. 

V. SOLUTIONS IN SPHERICAL GEOMETRY 

We consider now the case of steady-state flow in spher- 
ical geometry. We assume that a ball of neutrals has a 
density 

rzN( r) =N()e-?‘~2, (41) 
where r is the radial position in spherical coordinates. The 
center of the ball is at x=0, the anode surface. We are 
therefore actually interested in the ion flow from a half-ball 
on the anode surface, but for simplicity we consider the 
spherically symmetric case. The electron density satisfies 
Eq. (13) with y=5/3, 

ne=no( 1 +fY)? (42) 

In spherical symmetry we obtain the equation 

where p = r/A. 
Energy conservation for Eq. (43) is shown similarly to 

that for the steady-state slab in Sec. IV. The ion energy flux 
at p is 

s Y-1 WY--l) I-;= ,” dp’ pt2e-Pf2 1+ - V(p’) 
Y 

x [Y(p’) -Y(p) I. (44) 
The electron energy flux at p is 

s Y-1 WY--l) I-f= ’ dp’pt2e-P” 
0 

1 +y Y (p’) 

Y X- 
Y-1 

The energy generation rate within radius p is 

s 
Y-l l/(y-1) 

SE= ,’ dp’ p’2e-p’2 I+ - Y(p’) 
Y 

(45) 

(46) 

The expression (I’F+I$) -SE is identically zero, as is 
necessary for energy conservation. 

In Fig. 6(a) we plot Y vs p, from the numerical solu- 
tion of Eq. (43)) for several values of a. Figures 6(b) and 
6(c) show the electron and ion energies. Steady-state ion 
heating (and electron cooling) is largest for a= 1.76. In 

(a) P 
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FIG. 6. (a) ‘4’ vs p, (b) the normalized temperature T/To vs p, and (c) 
the normalized ion energy E/TO vs p, for various values of a. 

this case, about two-thirds of the electron energy is con- 
verted to ion energy. The ion heating rapidly decreases 
with decreasing a. For a > 1.76, the solution for Y be- 
comes singular, indicating the absence of a steady-state 
flow. 

We now consider time-dependent expansion in spher- 
ical geometry. This corresponds to a > 1.76 for the neutral 
ball described by Eq. (41). Let us examine the idealized 
problem of the expansion of a plasma ball. As with the 
steady-state expansion, the presence of the anode does not 
allow spherical symmetry in our case. However, for sim- 
plicity we treat a half-ball as a full ball. The reduction of 
temperature is Tf/Ti= ( Lf/Li) -d(y- ‘) = ( L/Lj) -‘. If 
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the electron temperature decreases to one-fourth and the 
rest of the energy becomes ion directed energy we obtain 
final ion energy three times the electron energy. It is there- 
fore sufficient that the plasma dimension doubles itself for 
such an energy transfer. 

We demonstrate the above estimate again with a self- 
similar solution. As in Sec. IV, we take s(r) to be zero for 
the time-dependent expansion. The governing equations 
become 

a a ( 1 4 a y-1 z+v$ v=--- (y-l) drP -" (47) 

and 

ap ia 
Kfgl& e$J) =o, (48) 

where v is the radial component of the velocity. The self- 
similar solution to this system is almost identical to that in 
slab geometry (Sec. IV), and is given in Ref. 21 for v=O. 
We obtain 

p(rA =pcCtl(l - j$$)*‘(‘--I), (49) 

where 

p,(t)R(t)3= 1 (50) 
and 

p,(O) =R(O) = 1. (51) 
Here, we normalize r by R,, p by p&, v by us= ( Tc/M) 1/2, 
t by Rdv,, and Y by vJRo. The velocity is 

v(r,t) =b(t)r/R(t) (52) 

for r(R(r). The equation of motion for the radius R is 

k= 2Y 
(y- 1 )R3Y-~-vRa 

At later times R is small and 

RZ ( 2y(3y-l) l/(sy-t) 20 114 

V(Y- 1) 
f) =(-2) t-co. (54) 

The velocity d approaches zero asymptotically. At earlier 
times we neglect collisions and the solution of (53) with- 
out the second term on the right-hand side is 

R=(l+5&*“, t-.0. (55) 
Figure 7 shows R as a function oft for various values of v 
for y=5/3. For v= 1, which corresponds to a neutral den- 
sity of 10f8 cmw3, we plot also the approximate relations 
(54) and (55). 

Unless the neutral density is very large ( 10” cmM3) we 
can neglect the collision term in (53). When collisions are 
neglected, the electron thermal energy 
&=$Jtdr4rr?P,(r,t) and the ion directed energy 
Ek= J$dr 4rr?tpv(r,t)’ are 

6~ 1 
W)=gq2 o s 

dx x2( 1 -x2)5’2 (56) 

FIG. 7. R vs f, for v=O. 1, 1, 10. The dotted curves show the approximate 
results [ (54) and ( 55)] for Y= 1. 

and 

dx x2( 1 -x~)~/=, 

where we used the relation (R)2=5( 1- 1/R2). We obtain 

Ek/BT=R2--1. (58) 
For ion energy two to three times the electron energy R has 
to be 1.7-2. Assume that at this value the average density 
in the ball is equal to the density of the plasma back- 
ground. The average density of the ball is then initially tive 
to eight times the background density. 

The time-dependent spherical expansion has the fol- 
lowing features: a plasma generated as a ball of density few 
times 1016 cme3 one order of magnitude larger than that 
of the plasma density, and composed initially of cold ions 
and eiectrons of temperature - 30 eV expands. By the time 
the density of the ball becomes equal to the density of the 
background plasma the electron temperature is about 10 
eV and the singly charged ion kinetic energy is about 20 
eV. The initial radius is less than 30 pm and the final radius 
of the ball is smaller than 50 pm. 

The lower bound on the ball radius is not clear. If the 
initial ball radius is much smaller than the electron Larmor 
radius and the collision mean-free path the expansion 
would be collisionless. There is no clear way to show it is 
not so. However, the ball radius seems to be related to 
nonuniformities in the anode and they should determine 
the initial ball dimensions. 

A consequence of the localized plasma generation is 
the presence of strong electric fields near the anode, of 
intensity 10 kV/cm. The assumption that pIasma is gener- 
ated and expands in a few nsec results in fluctuations of the 
electric field with frequency of 10’ set-*. Such strong os- 
cillations were in fact measured in all the plasma.” 

VI. CONCLUSIONS 

We examined several pictures of energetic ion genera- 
tion in the anode plasma. We assumed that a dense plasma 
is generated in a small region near the anode and during its 
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expansion into the background plasma electrons transfer 
their thermal energy into ion directed kinetic energy. Both 
time-dependent and steady-state plasma expansions were 
examined for a slab and spherical geometries. While the 
amount of energy transferred from the electrons to ions is 
not very sensitive to the geometry, a plasma generation in 
“half-balls” could explain the isotropy of the ion energies, 
while a slab plasma should result in anisotropic ion veloc- 
ity distribution. Thus, our model could explain the three 
main observations related to the ion velocities: the magni- 
tude of the ion flow velocity normal to the anode surface, 
the isotropy of ion velocity distribution parallel to the an- 
ode surface, and the ion acceleration very close to the an- 
ode surface. Our model assumes higher electron tempera- 
ture and density near the anode. We are currently using 
our spectroscopic methods to measure with high spatial 
resolution the plasma parameters near the anode. 

The source of the ion energy in the picture we suggest 
is the electron thermal energy. Possible sources for a high 
electron thermal energy near the anode should be investi- 
gated further. 
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